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ABSTRACT
Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel
manipulator with inextensible limbs and base-mounted actuators are presented. The ma-
nipulator has higher resolution and precision than the existing three DOF mechanisms with
extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload
capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manip-
ulator is suitable for alignment applications where only tip, tilt, and piston motions are
significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree
polynomial in the square of tangent of half-angle between one of the limbs and the base plane.
Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is
shown that the 16 solutions are eight pairs of reflected configurations with respect to the
base plane. Numerical examples for the direct and inverse kinematics of the manipulator are
also presented.

INTRODUCTION

In the past few years, several researchers have shown a great deal of interest in studying
kinematic synthesis and analysis of parallel manipulators. Such mechanisms are most suit-
able for applications in which the requirements for precision, rigidity, load-to-weight ratio,
and load distribution are more important than the need for a large workspace.

The Stewart-Gough platform [1] is probably the first six degree-of-freedom (DOF) parallel
mechanism which has been studied in the literature. Waldron and Hunt [2] showed that
kinematic behavior of parallel mechanisms has many inverse characteristics to that of serial
mechanisms. For example, direct kinematics of a parallel manipulator is much more difficult
than its inverse kinematics; whereas, for a serial manipulator, the opposite is true.

Several researchers have analyzed the direct kinematics of the Stewart-Gough platform.
Griffis and Duffy [3] as well as Nanua et al. [4] studied direct kinematics of special cases of
the Stewart-Gough platform, in which pairs of spherical joints are concentric on either the
platform or both the base and the platform. They were able to reduce the problem to an
eighth-degree polynomial in the square of a single variable (total degree of 16). However, as
mentioned by Griffis and Duffy [3], pairs of concentric spherical joints may very well present
design problems. Lin et al. [5] solved direct kinematics of another class of the Stewart-
Gough platforms, in which there are two concentric spherical joints on the base and two
more concentric spherical joints on the platform. The latter class of the Stewart-Gough
platforms suffer from lack of symmetry and concentric spherical joints are still needed in
their construction. Parenti-Castelli and Innocenti have also been able to obtain closed-
form solutions for other special forms of the Stewart-Gough platform [6]. Raghavan used a
numerical technique known as polynomial continuation to show that there are forty solutions
for the direct kinematics of the Stewart-Gough platform of general geometry [7]. Other
types of six-DOF parallel manipulators have been introduced and studied in the literature
by Tahmasebi and Tsai [8,9], Merlet [10], Ben-Horin and Shoham [11], and Hudgens and
Tesar [12].

Some researchers have also shown interest in three DOF parallel mechanism. For example,
Gosselin and Angeles have studied optimal kinematic design of planar and spherical parallel
manipulators [13,14]. Tsai analyzed the kinematics of a three DOF platform manipulator
with three extensible limbs [15]. Song and Zhang studied a three DOF mechanism with three
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RPS legs [16]. Ceccarelli introduced a new three DOF spatial parallel mechanism [17].

In this paper, closed-form direct kinematic solution for a new three DOF parallel manip-
ulator is presented. It will be shown that direct kinematics of the minimanipulator involves
solving an eighth-degree polynomial in the square of a single variable. The simpler inverse
kinematics of the three DOF manipulators will also be presented.

The manipulator, which is being analyzed in this article is suitable for optical (and other
types of) alignment applications where only tip, tilt, and piston motions are significant (e.g.,
alignment of segmented spherical mirrors, alignment of Fabry-Perot interferometers).

DESCRIPTION OF THE MANIPULATOR

The mechanism described here is a three DOF parallel alignment manipulator with three
inextensible limbs and base-mounted actuators. Figure 1 shows the details of the manipula-
tor. The picture of a manipulator prototype is shown in Figure 2.

The three inextensible limbs R1P1, R2P2, and R3P3 are connected to the output moving
platform through spherical joints P1, P2, and P3. The lower ends of the limbs are connected
to links R1T1, R2T2, and R3T3 through revolute joints at R1, R2, and R3. Slider Links R1T1,
R2T2, and R3T3 are connected to the fixed base through base-mounted prismatic actuators
N1T1, N2T2, and N3T3, respectively.

The manipulator has three degrees of freedom. Tip, tilt, and piston motions of the moving
platform (output link) can be obtained by using the prismatic actuators to vary the O1R1,
O2R2, and O3R3 lengths. Note that the prismatic actuators can be inside or outside of the
R1R2R3 triangle formed by the lower ends of the limbs.

Examples of prismatic actuators that can be used in the manipulator include: (1) lead
screws; (2) linear hydraulic motors; (3) inch worm linear stepper motors; (4) piezoelectric
linear drives; (5) linear flexure (compliant) drives.

Let subscript i in this section and the rest of this work represent numbers 1, 2, and 3 in a

cyclic manner. The angle between the lines ONi and ONi+1 is equal to 120 degrees.

Compared to the existing three DOF platforms with extensible limbs and limb-mounted
actuators, the manipulator being introduced here has the following advantages:

• Its power and sensor lines need not be routed through its joints at the lower ends of its
limbs.
• It has higher resolution and precision.
⋆ The prismatic actuators move the lower ends of the limbs on the fixed base. Large move-
ments at the lower ends of the limbs are needed to generate smaller movements at the top
ends of the limbs, which are connected to the moving platform. This “motion reduction”
feature results in higher mechanical advantage.
• Weight of any of its base-mounted actuators is not a load for its other two actuators.

Note that the manipulator limb configurations shown in Figures 1, 2, and 3 are different

from those used in the six DOF minimanipulator introduced by Tahmasebi and Tsai [8,9].
Compliant (flexured) joints and linear actuators can be used in construction of the manipu-
lator to obtain very small movements.

Since there are no joints on the limbs, the manipulator can also be used as an inflatable
space device.
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Figure 1: The new manipulator with base-mounted actuators and inextensible limbs.

Figure 2: The new manipulator prototype.

If rotary actuation is desired, slider-crank mechanisms can be used as drivers for the ma-
nipulators (see Figure 4). Links C ′

iA
′

i and A′

iB
′

i transform the rotary actuation at C ′

i to linear
motion of the slider link TiRi. Link variables a and b in Figure 4 can be chosen properly to
add additional mechanical advantage (motion reduction) to the manipulator.

INVERSE KINEMATICS

Solving the inverse kinematics of the manipulator involves finding li (length of the vector
ORi), given three position and/or orientation variables of the moving platform.

As mentioned earlier, the manipulator is suitable for optical (and other types of) alignment
applications where only tip (rotation about the X axis), tilt (rotation about the Y axis), and
piston (translation along the Z axis) motions are significant. In this paper, we choose the
tip, tilt, and piston variables as the three known inputs for the inverse kinematics of the
manipulator. As shown below, given the tip, tilt, and piston degrees of freedoms of the

3



Ri

Pi
Upper Universal Joint

Lower Revolute Joint

Inextensible Limb

Revolute Joint (Axis Collinear with the Limb)

Figure 3: An alternative limb configuration.

Ri

Pi

Base-Mounted Rotary Actuator

a

b

Ni

Ti

Base-Mounted Prismatic Joint

Inextensible Manipulator Limb

Spherical Joint

Revolute Joints at A’i, B’i, and Ri.

A’i B’i

C’i
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moving platform, its complete location can be determined.
Let us define the fixed base reference frame (XYZ) and the moving platform reference

frame (UVW) in detail. The origin of the platform reference frame (point G) is placed at
the centroid of triangle P1P2P3 (see Figure 1). The positive U-axis is parallel to and points
in the direction of vector P2P3. The positive V-axis points from point G to point P1. The
W-axis is defined by the right-hand-rule. To keep the minimanipulator symmetric, triangle
P1P2P3 is made equilateral. Let the “home” or reference configuration of the manipulator
be the one in which the limbs are perpendicular to the fixed base plane. The origin of the
base reference frame (point O) is placed at the projection of point G onto the base plane
at the reference configuration. The positive X-axis is parallel to and points in the direction
of vector R2R3 at the reference configuration. The positive Y-axis points from point O to
point R1. The Z-axis is defined by the right-hand-rule.

Revolute Joint Constraints

The revolute joints at R1, R2, and R3 impose the following constraints on the coordinates
of points P1, P2, and P3 in the fixed reference frame.

XP,1 = 0 , XP,2 =
√

3YP,2 , XP,3 = −
√

3YP,3, (1)

where XP,i and YP,i are the X and Y coordinates of point Pi, respectively. Let ux, uy, uz be
the XYZ components of a unit vector along the U axis. Similarly, let vx, vy, vz represent the
XYZ components of a unit vector along the V axis. Finally, let wx, wy, wz denote the XYZ
components of a unit vector along the W axis. Then







XP,i

YP,i

ZP,i





 =







XG

YG

ZG





 +







ux vx wx

uy vy wy

uz vz wz













UP,i

VP,i

WP,i





 , (2)

where UP,i, VP,i, and WP,i are the U, V, and W coordinates of point Pi. Similarly, XG, YG,
and ZG are the X, Y, and Z coordinates of point G. Let p denote the length of vector GPi.
Then







UP,1

VP,1

WP,1





 =







0
p
0





 ,







UP,2

VP,2

WP,2





 =







−
√

3p/2
−0.5p

0





 ,







UP,3

VP,3

WP,3





 =







√
3p/2

−0.5p
0





 . (3)

Combining equations (2) and (3), we obtain

XP,1 = XG + pvx , XP,2 = XG −
√

3pux/2 − 0.5pvx , XP,3 = XG +
√

3pux/2 − 0.5pvx (4)

YP,1 = YG + pvy , YP,2 = YG −
√

3puy/2 − 0.5pvy , YP,3 = YG +
√

3puy/2 − 0.5pvy (5)

ZP,1 = ZG + pvz , ZP,2 = ZG −
√

3puz/2 − 0.5pvz , ZP,3 = ZG +
√

3puz/2 − 0.5pvz. (6)

Substituting for XP,1, XP,2, XP,3, YP,2, and YP,3 from equations (4) and (5) into equation (1)
yields the following equations

XG = −pvx, (7)

XG −
√

3pux/2 − 0.5pvx =
√

3(YG −
√

3puy/2 − 0.5pvy), and (8)

XG +
√

3pux/2 − 0.5pvx = −
√

3(YG +
√

3puy/2 − 0.5pvy). (9)
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Subtracting equation (9) from equation (8) and simplifying, we get

YG = 0.5p(vy − ux). (10)

Adding equations (8) and (9) results in

2XG − pvx = −3puy. (11)

Subtracting equation (11) from two times equation (7) and simplifying, we get

vx = uy. (12)

Equations (7), (10), and (12) represent the constraints imposed by the revolute joints at R1,
R2, and R3 on the platform motion.

Analytical Solution

Let ψ, θ, and φ represent the rotations of the moving platform about the X, Y, and Z axes,
respectively. The rotation matrix of the platform with respect to the fixed base (R) can be
expressed as [18]

R =







ux vx wx

uy vy wy

uz vz wz





 =







CφCθ CφSθSψ − SφCψ CφSθCψ + SφSψ
SφCθ SφSθSψ + CφCψ SφSθCψ − CφSψ
−Sθ CθSψ CθCψ





 , (13)

where C and S denote the cosine and sine trigonometric functions, respectively. Using the
constraint expressed in equation (12) and equation (13), we can write

CφSθSψ − SφCψ = SφCθ. (14)

Equation (14) can be rearranged to obtain

tanφ = Sφ/Cφ = SθSψ/(Cθ + Cψ). (15)

Given ψ (tip) and θ (tilt), equation (15) can be solved for φ (twist). Two solutions are
possible. Only one of the solutions is feasible. The other solution, which is 180 degrees
greater than the feasible solution is not practical.

Now that we have all 3 platform rotation angles (i.e., ψ, θ, and φ); we can obtain ux, uy,
and vy from equation (13); and solve for XG and YG using equations (7) and (10).

Having found the location (position and orientation) of the platform from its tip, tilt,
and piston degrees of freedom; we can now turn our attention to determining li. The XYZ
coordinates of point Ri is expressed in the following equation:







XR,1

YR,1

ZR,1






=







0
l1
0






,







XR,2

YR,2

ZR,2






=







−
√

3l2/2
−0.5l2

0






,







XR,3

YR,3

ZR,3






=







√
3l3/2

−0.5l3
0






. (16)

Let the length of each inextensible limb be equal to r. Then

(XP,i −XR,i)
2 + (YP,i − YR,i)

2 + (ZP,i − ZR,i)
2 = r2. (17)
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Substituting from equations (4), (5), (6), and (16) into equation (17) yields

(XG + pvx)
2 + (YG + pvy − l1)

2 + (ZG + pvz)
2 = r2 (18)

(XG −
√

3pux/2 − 0.5pvx +
√

3l2/2)2 + (YG −
√

3puy/2 − 0.5pvy + 0.5l2)
2 +

(ZG −
√

3puz/2 − 0.5pvz)
2 = r2 (19)

(XG +
√

3pux/2 − 0.5pvx −
√

3l3/2)2 + (YG +
√

3puy/2 − 0.5pvy + 0.5l3)
2 +

(ZG +
√

3puz/2 − 0.5pvz)
2 = r2. (20)

Equations (18), (19), and (20) represent three quadratic equations in l1, l2, and l3, respec-
tively. Two solutions exist for each of the three unknowns. Geometrically, these two solutions
represent intersections of a sphere, which is centered at Pi and has the radius of r, with the
line ORi.

Numerical Example

In this example, the above procedure is demonstrated. Let the length of each side of
triangle P1P2P3 be equal to q. The manipulator dimensions in this sample problem are

q = 1.5 , r = 1.

Using the relationship p = q/
√

3, we find p to be equal to 0.866. Note that only the ratios are
important; therefore, r is set equal to 1.The tip, tilt, and piston variables for this example
are

ψ = 5◦ , θ = 5◦ , ZG = 0.7.

Rotation of the platform about the Z axis (φ), XG, and YG are found to be

φ = 0.22◦ , XG = −0.0033 , YG = 0.0000.

The calculated results for li are

l1 = 1.49 or 0.23 , l2 = 1.55 or 0.18 , l3 = 1.66 or 0.05.

The results of the above numerical example have been verified by performing a direct kine-
matics analysis.

DIRECT KINEMATICS

Solving the direct kinematics of the manipulator involves finding the location (position
and orientation) of the moving platform, given the l1, l2, and l3 lengths.

Angles between the Limbs and the Base

As shown in Figure 5, let ηi be the angle from vector ORi to vector RiPi. Also, let αi be
the angle from the positive X-axis to vector ORi. Angle αi can be found (in radians) from

αi = π/2 + (i− 1)2π/3. (21)

The X and Y coordinates of point Ri in the fixed reference frame XYZ can be found from

7



X

Y

O

i

i

R
i

P
i

r

l
i

Figure 5: Depiction of angles αi and ηi.

the following relationships

XR,i = liCαi , YR,i = liSαi. (22)

The coordinates of point Pi in the fixed reference frame XYZ are

XP,i = rCαiCηi +XR,i, (23)

YP,i = rSαiCηi + YR,i, (24)

ZP,i = rSηi. (25)

Referring to Figure 1, we can write

(XP,i −XP,i+1)
2 + (YP,i − YP,i+1)

2 + (ZP,i − ZP,i+1)
2 = q2. (26)

Substituting from equations (21), (22) into equations (23 and (24); and substituting the
resulting expressions for XP,i and XP,i as well as equation (25) into equation (26) and sim-
plifying, we obtain

AiSηiSηi+1 +BiCηiCηi+1 +DiCηi + EiCηi+1 + Fi = 0, (27)

where Ai = −2r2, Bi = r2, Di = 2rli+rli+1, Ei = rli+2rli+1, and Fi = 2r2+l2i +l2i+1+lili+1−
q2. Let ti = tan(ηi/2). Then Cηi = (1 − t2i )/(1 + t2i ), and Sηi = 2ti/(1 + t2i ). Substituting
these expressions into equation (27) and simplifying, we obtain

Git
2

i t
2

i+1 +Hit
2

i + Iit
2

i+1 + Jititi+1 +Ki = 0, (28)

where Gi = Bi −Di −Ei + Fi, Hi = −Bi −Di +Ei + Fi, Ii = −Bi +Di −Ei + Fi, Ji = 4Ai,
and Ki = Bi +Di +Ei + Fi. Equation (28) can be rewritten, for i = 1, 2, 3, in the following
forms

(G1t
2

1 + I1)t
2

2 + (J1t1)t2 + (H1t
2

1 +K1) = 0, (29)

(G2t
2

3 +H2)t
2

2 + (J2t3)t2 + (I2t
2

3 +K2) = 0, (30)
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(G3t
2

1 +H3)t
2

3 + (J3t1)t3 + (I3t
2

1 +K3) = 0. (31)

Equations (29), (30), and (31) represent 3 equations in the three unknowns t1, t2, and t3. In
what follows, we will reduce these equations to an eighth-degree polynomial in the square of
t1.
•Step 1 - Elimination of t2
We can think of equations (29) and (30) as two equations in the variable t2. Let

L1 = G1t
2

1 + I1 , M1 = J1t1 , N1 = H1t
2

1 +K1,

and
L2 = G2t

2

3 +H2 , M2 = J2t3 , N2 = I2t
2

3 +K2,

then equations (29) and (30) can be written as

L1t
2

2 +M1t2 +N1 = 0, (32)

and
L2t

2

2 +M2t2 +N2 = 0. (33)

Multiplying equation (32) by L2 and equation (33) by L1, and subtracting, we obtain

(M1L2 −M2L1)t2 + (N1L2 −N2L1) = 0. (34)

Multiplying equation (32) by N2 and equation (33) by N1, subtracting, and dividing by t2,
we obtain

(L1N2 − L2N1)t2 + (M1N2 −M2N1) = 0. (35)

Equations (34) and (35) represent two linear equations in one unknown. Vanishing of their
eliminant yields [19]

∣

∣

∣

∣

∣

M1L2 −M2L1 N1L2 −N2L1

L1N2 − L2N1 M1N2 −M2N1

∣

∣

∣

∣

∣

= 0. (36)

Expanding equation (36) and substituting the expressions for L1,M1, N1, L2,M2, and N2

results in the following equation.

O1t
4

3 +O2t
3

3 +O3t
2

3 +O4t3 +O5 = 0, (37)

where

O1 = U1t
4

1 + U2t
2

1 + U3,

O2 = U4t
3

1 + U5t1,

O3 = U6t
4

1 + U7t
2

1 + U8,

O4 = U9t
3

1 + U10t1,

O5 = U11t
4

1 + U12t
2

1 + U13.

Symbolic algebra program Macsyma [20] was used to find the following expressions for U1

through U13.

U1 = G2

1I
2

2 − 2G1G2H1I2 +G2

2H
2

1

U2 = −2G1G2I2K1 + 2G2

2H1K1 +G2I2J
2

1 + 2G1I1I
2

2 − 2G2H1I1I2
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U3 = G2

2K
2

1 − 2G2I1I2K1 + I2

1I
2

2

U4 = −G1I2J1J2 −G2H1J1J2

U5 = −G2J1J2K1 − I1I2J1J2

U6 = 2G2

1I2K2 − 2G1G2H1K2 +G1H1J
2

2 − 2G1H1H2I2 + 2G2H
2

1H2

U7 = −2G1G2K1K2 +G2J
2

1K2 + 4G1I1I2K2 − 2G2H1I1K2 +G1J
2

2K1 −
2G1H2I2K1 + 4G2H1H2K1 +H1I1J

2

2 +H2I2J
2

1 − 2H1H2I1I2

U8 = −2G2I1K1K2 + 2I2

1I2K2 + 2G2H2K
2

1 + I1J
2

2K1 − 2H2I1I2K1

U9 = −G1J1J2K2 −H1H2J1J2

U10 = −I1J1J2K2 −H2J1J2K1

U11 = G2

1K
2

2 − 2G1H1H2K2 +H2

1H
2

2

U12 = 2G1I1K
2

2 − 2G1H2K1K2 +H2J
2

1K2 − 2H1H2I1K2 + 2H1H
2

2K1

U13 = I2

1K
2

2 − 2H2I1K1K2 +H2

2K
2

1

•Step 2 - Elimination of t3
Equation (31) can be rewritten as

V1t
2

3 + V2t3 + V3 = 0, (38)

where V1 = G3t
2
1 +H3, V2 = J3t1, and V3 = H3t

2
1 +K3. We can think of equations (37) and

(38) as two equations in the variable t3. Multiplying equation (37) by V1 and equation (38)
by O1t

2
3, and subtracting, we obtain

(O2V1 − O1V2)t
3

3 + (O3V1 − O1V3)t
2

3 +O4V1t3 +O5V1 = 0. (39)

Multiplying equation (37) by V1t3 + V2 and equation (38) by O1t
3
3 + O2t

2
3, and subtracting,

we obtain

(O3V1 −O1V3)t
3

3 + (O4V1 +O3V2 − O2V3)t
2

3 + (O5V1 +O4V2)t3 +O5V2 = 0. (40)

Multiplying equation (38) by t3, we obtain

V1t
3

3 + V2t
2

3 + V3t3 = 0. (41)

We can think of equations (39), (40), (41), and (38) as four linear equations in three unknowns
t33, t

2
3, and t3. Vanishing of their eliminant yields [19]

∣

∣

∣

∣

∣

∣

∣

∣

∣

O2V1 − O1V2 O3V1 −O1V3 O4V1 O5V1

O3V1 − O1V3 O4V1 +O3V2 − O2V3 O5V1 +O4V2 O5V2

V1 V2 V3 0
0 V1 V2 V3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (42)

Expansion of equation (42) results in

−O5V1[(O3V1 − O1V3)(V
2

2 − V1V3) − V1V2(−O2V3 +O3V2 +O4V1) +

V 2

1 (O4V2 +O5V1)] + (O2V1 − O1V2)[O5V2(V
2

2 − V1V3) +

V 2

3 (−O2V3 +O3V2 +O4V1) − V2(O4V2 +O5V1)V3] +

O4V1[−V1V3(−O2V3 +O3V2 +O4V1) + V2V3(O3V1 − O1V3) +O5V
2

1 V2] −
(O3V1 − O1V3)[V

2

3 (O3V1 −O1V3) − V1(O4V2 +O5V1)V3 +O5V1V
2

2 ] = 0. (43)
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Equation (43) is an eighth-degree polynomial in the square of t1 (see the Appendix). An
example of such an eighth-degree polynomial is equation (44), which is shown in the following
numerical sample. It follows that there are at most eight pairs of solutions for t1. In each
pair, one solution is the negative of the other one. The elimination procedure described
above (Sylvester dialytic elimination) has also been used by many others including Roth
[21]; Tahmasebi and Tsai [8]; and Ben-Horin and Shoham [11].

Location of the Platform

Having found t1; t2, and t3 can be determined by back substituting t1 into equations (29)
and (31). The angle ηi can easily be determined from ti. The XYZ coordinates of point
Pi can then be found by substituting the values of ηi into equations (23), (24), and (25).
The XYZ coordinates of points P1, P2, and P3 completely define the location of the moving
platform.

In summary, solving the direct kinematics problem results in at most eight pairs of manip-
ulator locations. In each pair, one location is the mirror image of the other one with respect
to the R1R2R3 base plane (see the numerical example below).

Numerical Example

In this example, the direct kinematics procedure described above is demonstrated. The
same parameters used in the inverse kinematics numerical example is used here. Namely,
r = 1, q = 1.5, and p = 0.866. Let the input variables be

l1 = 1.49 , l2 = 0.18 , l3 = 1.66.

Then, equation (43) reduces to

t161 − 130.1813t141 + 674.5842t121 + 4127.9989t101 − 18783.1681t81 − 55477.6465t61 +

134975.0739t41 + 330780.9874t21 + 11863.8182 = 0. (44)

The 16 solutions for t1 are

±ı̈0.1908, ±ı̈1.5479, ±ı̈1.68196, ±2.1049, ±2.3239, ±ı̈1.8714,
±2.1464, ±11.1583

where ı̈=
√
−1. The eight real solutions yield the values shown in Tables 1 and 2 for angles

η1, η2, and η3 (in degrees) and the coordinates of points P1, P2, P3, and G. As mentioned
earlier, triangle P1P2P3 is equilateral. Therefore, the XYZ coordinates of point G in Tables 1
and 2 are calculated using the following relationships.

XG = (XP,1 +XP,2 +XP,3)/3, YG = (YP,1 + YP,2 + YP,3)/3, ZG = (ZP,1 + ZP,2 + ZP,3)/3

The results of the numerical example have been verified by performing an inverse kinematics
analysis. Note that pairs of solutions for points Pi and G are symmetric with respect to the
base plane, as predicted. Also note that solution 1 corresponds to the inverse kinematics
numerical example.

SUMMARY

In this paper, closed-form solutions for the direct and inverse kinematics of a new three
DOF parallel manipulator, which uses base-mounted actuators and inextensible limbs, are

11



No. 1 2 3 4
η1 129.1776 -129.1776 133.4338 -133.4338
η2 46.6998 -46.6998 -144.4482 144.4482
η3 143.3420 -143.3420 137.4258 -137.4258
XP,1 0.0000 0.0000 0.0000 0.0000
YP,1 0.8628 0.8628 0.8070 0.8070
ZP,1 0.7752 -0.7752 0.7262 -0.7262
XP,2 -0.7521 -0.7521 0.5465 0.5465
YP,2 -0.4342 -0.4342 0.3155 0.3155
ZP,2 0.7278 -0.7278 -0.5814 0.5814
XP,3 0.7422 0.7422 0.7992 0.7992
YP,3 -0.4285 -0.4285 -0.4614 -0.4614
ZP,3 0.5970 -0.5970 0.6765 -0.6765
XG -0.0033 -0.0033 0.4486 0.4486
YG 0.0000 0.0000 0.2203 0.2203
ZG 0.7000 -0.7000 0.2738 -0.2738

Table 1: First four real solutions of the direct kinematics sample problem.

presented. The manipulator is suitable for alignment applications in which only tip, tilt, and
piston motions are significant. It is shown that there are at most 16 solutions for the direct
kinematics of the manipulator. To obtain these solutions, only an eighth-degree polynomial
in the square of a single variable has to be solved. It is also shown that the 16 solutions are
eight pairs of reflected configurations with respect to the plane passing through the lower
ends of the manipulator’s three limbs. Direct and inverse kinematics numerical examples are
also presented.

APPENDIX - Expansion of Equation (43)

If we substitute the expressions for V1, V2, V3, O1, O2, O3, O4, and O5 into equation (43),
and expand, we obtain

Ξ1t
16

1 + Ξ2t
14

1 + Ξ3t
12

1 + Ξ4t
10

1 + Ξ5t
8

1 + Ξ6t
6

1 + Ξ7t
4

1 + Ξ8t
2

1 + Ξ9 = 0 (45)

where

Ξ1 = −G3
2 H3

2 U6
2 + 2 G3

3 H3 U11 U6 + 2 G3 H3
3 U1 U6 − G3

4 U11
2−

2 G3
2 H3

2 U1 U11 − H3
4 U1

2

Ξ2 = −G3
3 H3 U9

2 + G3
2 H3 J3 U6 U9 + 2 G3

2 H3
2 U4 U9 + G3

3 J3 U11 U9−
3 G3 H3

2 J3 U1 U9 − 2 G3
2 H3

2 U6 U7 + 2 G3
3 H3 U11 U7 + 2 G3 H3

3 U1 U7−
2 G3

2 H3 K3 U6
2 − 2 G3 H3

3 U6
2 + G3 H3

2 J3 U4 U6 + 2 G3 H3
3 U2 U6+

2 G3
3 H3 U12 U6 + 2 G3

3 K3 U11 U6 − G3
2 J3

2 U11 U6 + 6 G3
2 H3

2 U11 U6+

6 G3 H3
2 K3 U1 U6 − H3

2 J3
2 U1 U6 + 2 H3

4 U1 U6 − G3 H3
3 U4

2−

12



No. 5 6 7 8
η1 130.0379 -130.0379 169.7577 -169.7577
η2 45.7923 -45.7923 -50.5084 50.5084
η3 177.7693 -177.7693 -138.7068 138.7068
XP,1 0.0000 0.0000 0.0000 0.0000
YP,1 0.8512 0.8512 0.5104 0.5104
ZP,1 0.7656 -0.7656 0.1778 -0.1778
XP,2 -0.7620 -0.7620 -0.7089 -0.7089
YP,2 -0.4399 -0.4399 -0.4093 -0.4093
ZP,2 0.7168 -0.7168 -0.7717 0.7717
XP,3 0.5716 0.5716 0.7863 0.7863
YP,3 -0.3300 -0.3300 -0.4539 -0.4539
ZP,3 0.0389 -0.0389 -0.6599 0.6599
XG -0.0635 -0.0635 0.0258 0.0258
YG 0.0271 0.0271 -0.1176 -0.1176
ZG 0.5071 -0.5071 -0.4179 0.4179

Table 2: Last four real solutions of the direct kinematics sample problem.

3 G3
2 H3 J3 U11 U4 + H3

3 J3 U1 U4 − 2 G3
2 H3

2 U11 U2 − 2 H3
4 U1 U2−

2 G3
4 U11 U12 − 2 G3

2 H3
2 U1 U12 − 4 G3

3 H3 U11
2 − 4 G3

2 H3 K3 U1 U11+

4 G3 H3 J3
2 U1 U11 − 4 G3 H3

3 U1 U11 − 4 H3
3 K3 U1

2

Ξ3 = −G3
3 K3 U9

2 − 3 G3
2 H3

2 U9
2 + G3

2 H3 J3 U7 U9 + G3
2 J3 K3 U6 U9+

2 G3 H3
2 J3 U6 U9 + 2 G3

2 H3
2 U5 U9 + 4 G3

2 H3 K3 U4 U9 − G3 H3 J3
2 U4 U9+

4 G3 H3
3 U4 U9 − 3 G3 H3

2 J3 U2 U9 + G3
3 J3 U12 U9 + 3 G3

2 H3 J3 U11 U9−
2 G3

3 H3 U10 U9 − 6 G3 H3 J3 K3 U1 U9 + H3 J3
3 U1 U9 − 3 H3

3 J3 U1 U9−
2 G3

2 H3
2 U6 U8 + 2 G3

3 H3 U11 U8 + 2 G3 H3
3 U1 U8 − G3

2 H3
2 U7

2−
4 G3

2 H3 K3 U6 U7 − 4 G3 H3
3 U6 U7 + G3 H3

2 J3 U4 U7 + 2 G3 H3
3 U2 U7+

2 G3
3 H3 U12 U7 + 2 G3

3 K3 U11 U7 − G3
2 J3

2 U11 U7 + 6 G3
2 H3

2 U11 U7+

6 G3 H3
2 K3 U1 U7 − H3

2 J3
2 U1 U7 + 2 H3

4 U1 U7 − G3
2 K3

2 U6
2−

4 G3 H3
2 K3 U6

2 − H3
4 U6

2 + G3 H3
2 J3 U5 U6 + 2 G3 H3 J3 K3 U4 U6+

H3
3 J3 U4 U6 + 2 G3 H3

3 U3 U6 + 6 G3 H3
2 K3 U2 U6 − H3

2 J3
2 U2 U6+

2 H3
4 U2 U6 + 2 G3

3 H3 U13 U6 + 2 G3
3 K3 U12 U6 − G3

2 J3
2 U12 U6+

6 G3
2 H3

2 U12 U6 + 6 G3
2 H3 K3 U11 U6 − 2 G3 H3 J3

2 U11 U6 + 6 G3 H3
3 U11 U6+

G3
2 H3 J3 U10 U6 + 6 G3 H3 K3

2 U1 U6 − 2 H3 J3
2 K3 U1 U6 + 6 H3

3 K3 U1 U6−
2 G3 H3

3 U4 U5 − 3 G3
2 H3 J3 U11 U5 + H3

3 J3 U1 U5 − 3 G3 H3
2 K3 U4

2−
H3

4 U4
2 + H3

3 J3 U2 U4 − 3 G3
2 H3 J3 U12 U4 − 3 G3

2 J3 K3 U11 U4+

G3 J3
3 U11 U4 − 6 G3 H3

2 J3 U11 U4 + 2 G3
2 H3

2 U10 U4 + 3 H3
2 J3 K3 U1 U4−

2 G3
2 H3

2 U11 U3 − 2 H3
4 U1 U3 − H3

4 U2
2 − 2 G3

2 H3
2 U12 U2−

13



4 G3
2 H3 K3 U11 U2 + 4 G3 H3 J3

2 U11 U2 − 4 G3 H3
3 U11 U2 − 8 H3

3 K3 U1 U2−
2 G3

4 U11 U13 − 2 G3
2 H3

2 U1 U13 − G3
4 U12

2 − 8 G3
3 H3 U11 U12−

4 G3
2 H3 K3 U1 U12 + 4 G3 H3 J3

2 U1 U12 − 4 G3 H3
3 U1 U12 − 6 G3

2 H3
2 U11

2+

G3
3 J3 U10 U11 − 2 G3

2 K3
2 U1 U11 + 4 G3 J3

2 K3 U1 U11 − 8 G3 H3
2 K3 U1 U11−

J3
4 U1 U11 + 4 H3

2 J3
2 U1 U11 − 2 H3

4 U1 U11 − 3 G3 H3
2 J3 U1 U10−

6 H3
2 K3

2 U1
2

Ξ4 = −3 G3
2 H3 K3 U9

2 − 3 G3 H3
3 U9

2 + G3
2 H3 J3 U8 U9 + G3

2 J3 K3 U7 U9+

2 G3 H3
2 J3 U7 U9 + 2 G3 H3 J3 K3 U6 U9 + H3

3 J3 U6 U9 + 4 G3
2 H3 K3 U5 U9−

G3 H3 J3
2 U5 U9 + 4 G3 H3

3 U5 U9 + 2 G3
2 K3

2 U4 U9 − G3 J3
2 K3 U4 U9+

8 G3 H3
2 K3 U4 U9 − H3

2 J3
2 U4 U9 + 2 H3

4 U4 U9 − 3 G3 H3
2 J3 U3 U9−

6 G3 H3 J3 K3 U2 U9 + H3 J3
3 U2 U9 − 3 H3

3 J3 U2 U9 + G3
3 J3 U13 U9+

3 G3
2 H3 J3 U12 U9 + 3 G3 H3

2 J3 U11 U9 − 2 G3
3 K3 U10 U9 − 6 G3

2 H3
2 U10 U9−

3 G3 J3 K3
2 U1 U9 + J3

3 K3 U1 U9 − 6 H3
2 J3 K3 U1 U9 − 2 G3

2 H3
2 U7 U8−

4 G3
2 H3 K3 U6 U8 − 4 G3 H3

3 U6 U8 + G3 H3
2 J3 U4 U8 + 2 G3 H3

3 U2 U8+

2 G3
3 H3 U12 U8 + 2 G3

3 K3 U11 U8 − G3
2 J3

2 U11 U8 + 6 G3
2 H3

2 U11 U8+

6 G3 H3
2 K3 U1 U8 − H3

2 J3
2 U1 U8 + 2 H3

4 U1 U8 − 2 G3
2 H3 K3 U7

2−

2 G3 H3
3 U7

2 − 2 G3
2 K3

2 U6 U7 − 8 G3 H3
2 K3 U6 U7 − 2 H3

4 U6 U7+

G3 H3
2 J3 U5 U7 + 2 G3 H3 J3 K3 U4 U7 + H3

3 J3 U4 U7 + 2 G3 H3
3 U3 U7+

6 G3 H3
2 K3 U2 U7 − H3

2 J3
2 U2 U7 + 2 H3

4 U2 U7 + 2 G3
3 H3 U13 U7+

2 G3
3 K3 U12 U7 − G3

2 J3
2 U12 U7 + 6 G3

2 H3
2 U12 U7 + 6 G3

2 H3 K3 U11 U7−
2 G3 H3 J3

2 U11 U7 + 6 G3 H3
3 U11 U7 + G3

2 H3 J3 U10 U7 + 6 G3 H3 K3
2 U1 U7−

2 H3 J3
2 K3 U1 U7 + 6 H3

3 K3 U1 U7 − 2 G3 H3 K3
2 U6

2 − 2 H3
3 K3 U6

2+

2 G3 H3 J3 K3 U5 U6 + H3
3 J3 U5 U6 + G3 J3 K3

2 U4 U6 + 2 H3
2 J3 K3 U4 U6+

6 G3 H3
2 K3 U3 U6 − H3

2 J3
2 U3 U6 + 2 H3

4 U3 U6 + 6 G3 H3 K3
2 U2 U6−

2 H3 J3
2 K3 U2 U6 + 6 H3

3 K3 U2 U6 + 2 G3
3 K3 U13 U6 − G3

2 J3
2 U13 U6+

6 G3
2 H3

2 U13 U6 + 6 G3
2 H3 K3 U12 U6 − 2 G3 H3 J3

2 U12 U6 + 6 G3 H3
3 U12 U6+

6 G3 H3
2 K3 U11 U6 − H3

2 J3
2 U11 U6 + 2 H3

4 U11 U6 + G3
2 J3 K3 U10 U6+

2 G3 H3
2 J3 U10 U6 + 2 G3 K3

3 U1 U6 − J3
2 K3

2 U1 U6 + 6 H3
2 K3

2 U1 U6−
G3 H3

3 U5
2 − 6 G3 H3

2 K3 U4 U5 − 2 H3
4 U4 U5 + H3

3 J3 U2 U5−
3 G3

2 H3 J3 U12 U5 − 3 G3
2 J3 K3 U11 U5 + G3 J3

3 U11 U5 − 6 G3 H3
2 J3 U11 U5+

2 G3
2 H3

2 U10 U5 + 3 H3
2 J3 K3 U1 U5 − 3 G3 H3 K3

2 U4
2 − 3 H3

3 K3 U4
2+

H3
3 J3 U3 U4 + 3 H3

2 J3 K3 U2 U4 − 3 G3
2 H3 J3 U13 U4 − 3 G3

2 J3 K3 U12 U4+

G3 J3
3 U12 U4 − 6 G3 H3

2 J3 U12 U4 − 6 G3 H3 J3 K3 U11 U4 + H3 J3
3 U11 U4−

3 H3
3 J3 U11 U4 + 4 G3

2 H3 K3 U10 U4 − G3 H3 J3
2 U10 U4 + 4 G3 H3

3 U10 U4+

3 H3 J3 K3
2 U1 U4 − 2 H3

4 U2 U3 − 2 G3
2 H3

2 U12 U3 − 4 G3
2 H3 K3 U11 U3+
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4 G3 H3 J3
2 U11 U3 − 4 G3 H3

3 U11 U3 − 8 H3
3 K3 U1 U3 − 4 H3

3 K3 U2
2−

2 G3
2 H3

2 U13 U2 − 4 G3
2 H3 K3 U12 U2 + 4 G3 H3 J3

2 U12 U2 − 4 G3 H3
3 U12 U2−

2 G3
2 K3

2 U11 U2 + 4 G3 J3
2 K3 U11 U2 − 8 G3 H3

2 K3 U11 U2 − J3
4 U11 U2+

4 H3
2 J3

2 U11 U2 − 2 H3
4 U11 U2 − 3 G3 H3

2 J3 U10 U2 − 12 H3
2 K3

2 U1 U2−
2 G3

4 U12 U13 − 8 G3
3 H3 U11 U13 − 4 G3

2 H3 K3 U1 U13 + 4 G3 H3 J3
2 U1 U13−

4 G3 H3
3 U1 U13 − 4 G3

3 H3 U12
2 − 12 G3

2 H3
2 U11 U12 + G3

3 J3 U10 U12−
2 G3

2 K3
2 U1 U12 + 4 G3 J3

2 K3 U1 U12 − 8 G3 H3
2 K3 U1 U12 − J3

4 U1 U12+

4 H3
2 J3

2 U1 U12 − 2 H3
4 U1 U12 − 4 G3 H3

3 U11
2 + 3 G3

2 H3 J3 U10 U11−
4 G3 H3 K3

2 U1 U11 + 4 H3 J3
2 K3 U1 U11 − 4 H3

3 K3 U1 U11 − G3
3 H3 U10

2−
6 G3 H3 J3 K3 U1 U10 + H3 J3

3 U1 U10 − 3 H3
3 J3 U1 U10 − 4 H3 K3

3 U1
2

Ξ5 = −3 G3 H3
2 K3 U9

2 − H3
4 U9

2 + G3
2 J3 K3 U8 U9 + 2 G3 H3

2 J3 U8 U9+

2 G3 H3 J3 K3 U7 U9 + H3
3 J3 U7 U9 + H3

2 J3 K3 U6 U9 + 2 G3
2 K3

2 U5 U9−
G3 J3

2 K3 U5 U9 + 8 G3 H3
2 K3 U5 U9 − H3

2 J3
2 U5 U9 + 2 H3

4 U5 U9+

4 G3 H3 K3
2 U4 U9 − H3 J3

2 K3 U4 U9 + 4 H3
3 K3 U4 U9 − 6 G3 H3 J3 K3 U3 U9+

H3 J3
3 U3 U9 − 3 H3

3 J3 U3 U9 − 3 G3 J3 K3
2 U2 U9 + J3

3 K3 U2 U9−
6 H3

2 J3 K3 U2 U9 + 3 G3
2 H3 J3 U13 U9 + 3 G3 H3

2 J3 U12 U9 + H3
3 J3 U11 U9−

6 G3
2 H3 K3 U10 U9 − 6 G3 H3

3 U10 U9 − 3 H3 J3 K3
2 U1 U9 − G3

2 H3
2 U8

2−
4 G3

2 H3 K3 U7 U8 − 4 G3 H3
3 U7 U8 − 2 G3

2 K3
2 U6 U8 − 8 G3 H3

2 K3 U6 U8−
2 H3

4 U6 U8 + G3 H3
2 J3 U5 U8 + 2 G3 H3 J3 K3 U4 U8 + H3

3 J3 U4 U8+

2 G3 H3
3 U3 U8 + 6 G3 H3

2 K3 U2 U8 − H3
2 J3

2 U2 U8 + 2 H3
4 U2 U8+

2 G3
3 H3 U13 U8 + 2 G3

3 K3 U12 U8 − G3
2 J3

2 U12 U8 + 6 G3
2 H3

2 U12 U8+

6 G3
2 H3 K3 U11 U8 − 2 G3 H3 J3

2 U11 U8 + 6 G3 H3
3 U11 U8 + G3

2 H3 J3 U10 U8+

6 G3 H3 K3
2 U1 U8 − 2 H3 J3

2 K3 U1 U8 + 6 H3
3 K3 U1 U8 − G3

2 K3
2 U7

2−
4 G3 H3

2 K3 U7
2 − H3

4 U7
2 − 4 G3 H3 K3

2 U6 U7 − 4 H3
3 K3 U6 U7+

2 G3 H3 J3 K3 U5 U7 + H3
3 J3 U5 U7 + G3 J3 K3

2 U4 U7 + 2 H3
2 J3 K3 U4 U7+

6 G3 H3
2 K3 U3 U7 − H3

2 J3
2 U3 U7 + 2 H3

4 U3 U7 + 6 G3 H3 K3
2 U2 U7−

2 H3 J3
2 K3 U2 U7 + 6 H3

3 K3 U2 U7 + 2 G3
3 K3 U13 U7 − G3

2 J3
2 U13 U7+

6 G3
2 H3

2 U13 U7 + 6 G3
2 H3 K3 U12 U7 − 2 G3 H3 J3

2 U12 U7 + 6 G3 H3
3 U12 U7+

6 G3 H3
2 K3 U11 U7 − H3

2 J3
2 U11 U7 + 2 H3

4 U11 U7 + G3
2 J3 K3 U10 U7+

2 G3 H3
2 J3 U10 U7 + 2 G3 K3

3 U1 U7 − J3
2 K3

2 U1 U7 + 6 H3
2 K3

2 U1 U7−

H3
2 K3

2 U6
2 + G3 J3 K3

2 U5 U6 + 2 H3
2 J3 K3 U5 U6 + H3 J3 K3

2 U4 U6+

6 G3 H3 K3
2 U3 U6 − 2 H3 J3

2 K3 U3 U6 + 6 H3
3 K3 U3 U6 + 2 G3 K3

3 U2 U6−
J3

2 K3
2 U2 U6 + 6 H3

2 K3
2 U2 U6 + 6 G3

2 H3 K3 U13 U6 − 2 G3 H3 J3
2 U13 U6+

6 G3 H3
3 U13 U6 + 6 G3 H3

2 K3 U12 U6 − H3
2 J3

2 U12 U6 + 2 H3
4 U12 U6+

2 H3
3 K3 U11 U6 + 2 G3 H3 J3 K3 U10 U6 + H3

3 J3 U10 U6 + 2 H3 K3
3 U1 U6−

3 G3 H3
2 K3 U5

2 − H3
4 U5

2 − 6 G3 H3 K3
2 U4 U5 − 6 H3

3 K3 U4 U5+

H3
3 J3 U3 U5 + 3 H3

2 J3 K3 U2 U5 − 3 G3
2 H3 J3 U13 U5 − 3 G3

2 J3 K3 U12 U5+
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G3 J3
3 U12 U5 − 6 G3 H3

2 J3 U12 U5 − 6 G3 H3 J3 K3 U11 U5 + H3 J3
3 U11 U5−

3 H3
3 J3 U11 U5 + 4 G3

2 H3 K3 U10 U5 − G3 H3 J3
2 U10 U5 + 4 G3 H3

3 U10 U5+

3 H3 J3 K3
2 U1 U5 − G3 K3

3 U4
2 − 3 H3

2 K3
2 U4

2 + 3 H3
2 J3 K3 U3 U4+

3 H3 J3 K3
2 U2 U4 − 3 G3

2 J3 K3 U13 U4 + G3 J3
3 U13 U4 − 6 G3 H3

2 J3 U13 U4−
6 G3 H3 J3 K3 U12 U4 + H3 J3

3 U12 U4 − 3 H3
3 J3 U12 U4 − 3 H3

2 J3 K3 U11 U4+

2 G3
2 K3

2 U10 U4 − G3 J3
2 K3 U10 U4 + 8 G3 H3

2 K3 U10 U4 − H3
2 J3

2 U10 U4+

2 H3
4 U10 U4 + J3 K3

3 U1 U4 − H3
4 U3

2 − 8 H3
3 K3 U2 U3−

2 G3
2 H3

2 U13 U3 − 4 G3
2 H3 K3 U12 U3 + 4 G3 H3 J3

2 U12 U3 − 4 G3 H3
3 U12 U3−

2 G3
2 K3

2 U11 U3 + 4 G3 J3
2 K3 U11 U3 − 8 G3 H3

2 K3 U11 U3 − J3
4 U11 U3+

4 H3
2 J3

2 U11 U3 − 2 H3
4 U11 U3 − 3 G3 H3

2 J3 U10 U3 − 12 H3
2 K3

2 U1 U3−
6 H3

2 K3
2 U2

2 − 4 G3
2 H3 K3 U13 U2 + 4 G3 H3 J3

2 U13 U2 − 4 G3 H3
3 U13 U2−

2 G3
2 K3

2 U12 U2 + 4 G3 J3
2 K3 U12 U2 − 8 G3 H3

2 K3 U12 U2 − J3
4 U12 U2+

4 H3
2 J3

2 U12 U2 − 2 H3
4 U12 U2 − 4 G3 H3 K3

2 U11 U2 + 4 H3 J3
2 K3 U11 U2−

4 H3
3 K3 U11 U2 − 6 G3 H3 J3 K3 U10 U2 + H3 J3

3 U10 U2 − 3 H3
3 J3 U10 U2−

8 H3 K3
3 U1 U2 − G3

4 U13
2 − 8 G3

3 H3 U12 U13 − 12 G3
2 H3

2 U11 U13+

G3
3 J3 U10 U13 − 2 G3

2 K3
2 U1 U13 + 4 G3 J3

2 K3 U1 U13 − 8 G3 H3
2 K3 U1 U13−

J3
4 U1 U13 + 4 H3

2 J3
2 U1 U13 − 2 H3

4 U1 U13 − 6 G3
2 H3

2 U12
2−

8 G3 H3
3 U11 U12 + 3 G3

2 H3 J3 U10 U12 − 4 G3 H3 K3
2 U1 U12 + 4 H3 J3

2 K3 U1 U12−
4 H3

3 K3 U1 U12 − H3
4 U11

2 + 3 G3 H3
2 J3 U10 U11 − 2 H3

2 K3
2 U1 U11−

G3
3 K3 U10

2 − 3 G3
2 H3

2 U10
2 − 3 G3 J3 K3

2 U1 U10 + J3
3 K3 U1 U10−

6 H3
2 J3 K3 U1 U10 − K3

4 U1
2

Ξ6 = −H3
3 K3 U9

2 + 2 G3 H3 J3 K3 U8 U9 + H3
3 J3 U8 U9 + H3

2 J3 K3 U7 U9+

4 G3 H3 K3
2 U5 U9 − H3 J3

2 K3 U5 U9 + 4 H3
3 K3 U5 U9 + 2 H3

2 K3
2 U4 U9−

3 G3 J3 K3
2 U3 U9 + J3

3 K3 U3 U9 − 6 H3
2 J3 K3 U3 U9 − 3 H3 J3 K3

2 U2 U9+

3 G3 H3
2 J3 U13 U9 + H3

3 J3 U12 U9 − 6 G3 H3
2 K3 U10 U9 − 2 H3

4 U10 U9−
2 G3

2 H3 K3 U8
2 − 2 G3 H3

3 U8
2 − 2 G3

2 K3
2 U7 U8 − 8 G3 H3

2 K3 U7 U8−
2 H3

4 U7 U8 − 4 G3 H3 K3
2 U6 U8 − 4 H3

3 K3 U6 U8 + 2 G3 H3 J3 K3 U5 U8+

H3
3 J3 U5 U8 + G3 J3 K3

2 U4 U8 + 2 H3
2 J3 K3 U4 U8 + 6 G3 H3

2 K3 U3 U8−
H3

2 J3
2 U3 U8 + 2 H3

4 U3 U8 + 6 G3 H3 K3
2 U2 U8 − 2 H3 J3

2 K3 U2 U8+

6 H3
3 K3 U2 U8 + 2 G3

3 K3 U13 U8 − G3
2 J3

2 U13 U8 + 6 G3
2 H3

2 U13 U8+

6 G3
2 H3 K3 U12 U8 − 2 G3 H3 J3

2 U12 U8 + 6 G3 H3
3 U12 U8 + 6 G3 H3

2 K3 U11 U8−

H3
2 J3

2 U11 U8 + 2 H3
4 U11 U8 + G3

2 J3 K3 U10 U8 + 2 G3 H3
2 J3 U10 U8+

2 G3 K3
3 U1 U8 − J3

2 K3
2 U1 U8 + 6 H3

2 K3
2 U1 U8 − 2 G3 H3 K3

2 U7
2−

2 H3
3 K3 U7

2 − 2 H3
2 K3

2 U6 U7 + G3 J3 K3
2 U5 U7 + 2 H3

2 J3 K3 U5 U7+

H3 J3 K3
2 U4 U7 + 6 G3 H3 K3

2 U3 U7 − 2 H3 J3
2 K3 U3 U7 + 6 H3

3 K3 U3 U7+

2 G3 K3
3 U2 U7 − J3

2 K3
2 U2 U7 + 6 H3

2 K3
2 U2 U7 + 6 G3

2 H3 K3 U13 U7−
2 G3 H3 J3

2 U13 U7 + 6 G3 H3
3 U13 U7 + 6 G3 H3

2 K3 U12 U7 − H3
2 J3

2 U12 U7+
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2 H3
4 U12 U7 + 2 H3

3 K3 U11 U7 + 2 G3 H3 J3 K3 U10 U7 + H3
3 J3 U10 U7+

2 H3 K3
3 U1 U7 + H3 J3 K3

2 U5 U6 + 2 G3 K3
3 U3 U6 − J3

2 K3
2 U3 U6+

6 H3
2 K3

2 U3 U6 + 2 H3 K3
3 U2 U6 + 6 G3 H3

2 K3 U13 U6 − H3
2 J3

2 U13 U6+

2 H3
4 U13 U6 + 2 H3

3 K3 U12 U6 + H3
2 J3 K3 U10 U6 − 3 G3 H3 K3

2 U5
2−

3 H3
3 K3 U5

2 − 2 G3 K3
3 U4 U5 − 6 H3

2 K3
2 U4 U5 + 3 H3

2 J3 K3 U3 U5+

3 H3 J3 K3
2 U2 U5 − 3 G3

2 J3 K3 U13 U5 + G3 J3
3 U13 U5 − 6 G3 H3

2 J3 U13 U5−
6 G3 H3 J3 K3 U12 U5 + H3 J3

3 U12 U5 − 3 H3
3 J3 U12 U5 − 3 H3

2 J3 K3 U11 U5+

2 G3
2 K3

2 U10 U5 − G3 J3
2 K3 U10 U5 + 8 G3 H3

2 K3 U10 U5 − H3
2 J3

2 U10 U5+

2 H3
4 U10 U5 + J3 K3

3 U1 U5 − H3 K3
3 U4

2 + 3 H3 J3 K3
2 U3 U4+

J3 K3
3 U2 U4 − 6 G3 H3 J3 K3 U13 U4 + H3 J3

3 U13 U4 − 3 H3
3 J3 U13 U4−

3 H3
2 J3 K3 U12 U4 + 4 G3 H3 K3

2 U10 U4 − H3 J3
2 K3 U10 U4 + 4 H3

3 K3 U10 U4−
4 H3

3 K3 U3
2 − 12 H3

2 K3
2 U2 U3 − 4 G3

2 H3 K3 U13 U3 + 4 G3 H3 J3
2 U13 U3−

4 G3 H3
3 U13 U3 − 2 G3

2 K3
2 U12 U3 + 4 G3 J3

2 K3 U12 U3 − 8 G3 H3
2 K3 U12 U3−

J3
4 U12 U3 + 4 H3

2 J3
2 U12 U3 − 2 H3

4 U12 U3 − 4 G3 H3 K3
2 U11 U3+

4 H3 J3
2 K3 U11 U3 − 4 H3

3 K3 U11 U3 − 6 G3 H3 J3 K3 U10 U3 + H3 J3
3 U10 U3−

3 H3
3 J3 U10 U3 − 8 H3 K3

3 U1 U3 − 4 H3 K3
3 U2

2 − 2 G3
2 K3

2 U13 U2+

4 G3 J3
2 K3 U13 U2 − 8 G3 H3

2 K3 U13 U2 − J3
4 U13 U2 + 4 H3

2 J3
2 U13 U2−

2 H3
4 U13 U2 − 4 G3 H3 K3

2 U12 U2 + 4 H3 J3
2 K3 U12 U2 − 4 H3

3 K3 U12 U2−
2 H3

2 K3
2 U11 U2 − 3 G3 J3 K3

2 U10 U2 + J3
3 K3 U10 U2 − 6 H3

2 J3 K3 U10 U2−
2 K3

4 U1 U2 − 4 G3
3 H3 U13

2 − 12 G3
2 H3

2 U12 U13 − 8 G3 H3
3 U11 U13+

3 G3
2 H3 J3 U10 U13 − 4 G3 H3 K3

2 U1 U13 + 4 H3 J3
2 K3 U1 U13 − 4 H3

3 K3 U1 U13−
4 G3 H3

3 U12
2 − 2 H3

4 U11 U12 + 3 G3 H3
2 J3 U10 U12 − 2 H3

2 K3
2 U1 U12+

H3
3 J3 U10 U11 − 3 G3

2 H3 K3 U10
2 − 3 G3 H3

3 U10
2 − 3 H3 J3 K3

2 U1 U10

Ξ7 = H3
2 J3 K3 U8 U9 + 2 H3

2 K3
2 U5 U9 − 3 H3 J3 K3

2 U3 U9 + H3
3 J3 U13 U9−

2 H3
3 K3 U10 U9 − G3

2 K3
2 U8

2 − 4 G3 H3
2 K3 U8

2 − H3
4 U8

2−
4 G3 H3 K3

2 U7 U8 − 4 H3
3 K3 U7 U8 − 2 H3

2 K3
2 U6 U8 + G3 J3 K3

2 U5 U8+

2 H3
2 J3 K3 U5 U8 + H3 J3 K3

2 U4 U8 + 6 G3 H3 K3
2 U3 U8 − 2 H3 J3

2 K3 U3 U8+

6 H3
3 K3 U3 U8 + 2 G3 K3

3 U2 U8 − J3
2 K3

2 U2 U8 + 6 H3
2 K3

2 U2 U8+

6 G3
2 H3 K3 U13 U8 − 2 G3 H3 J3

2 U13 U8 + 6 G3 H3
3 U13 U8 + 6 G3 H3

2 K3 U12 U8−
H3

2 J3
2 U12 U8 + 2 H3

4 U12 U8 + 2 H3
3 K3 U11 U8 + 2 G3 H3 J3 K3 U10 U8+

H3
3 J3 U10 U8 + 2 H3 K3

3 U1 U8 − H3
2 K3

2 U7
2 + H3 J3 K3

2 U5 U7+

2 G3 K3
3 U3 U7 − J3

2 K3
2 U3 U7 + 6 H3

2 K3
2 U3 U7 + 2 H3 K3

3 U2 U7+

6 G3 H3
2 K3 U13 U7 − H3

2 J3
2 U13 U7 + 2 H3

4 U13 U7 + 2 H3
3 K3 U12 U7+

H3
2 J3 K3 U10 U7 + 2 H3 K3

3 U3 U6 + 2 H3
3 K3 U13 U6 − G3 K3

3 U5
2−

3 H3
2 K3

2 U5
2 − 2 H3 K3

3 U4 U5 + 3 H3 J3 K3
2 U3 U5 + J3 K3

3 U2 U5−
6 G3 H3 J3 K3 U13 U5 + H3 J3

3 U13 U5 − 3 H3
3 J3 U13 U5 − 3 H3

2 J3 K3 U12 U5+
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4 G3 H3 K3
2 U10 U5 − H3 J3

2 K3 U10 U5 + 4 H3
3 K3 U10 U5 + J3 K3

3 U3 U4−
3 H3

2 J3 K3 U13 U4 + 2 H3
2 K3

2 U10 U4 − 6 H3
2 K3

2 U3
2 − 8 H3 K3

3 U2 U3−
2 G3

2 K3
2 U13 U3 + 4 G3 J3

2 K3 U13 U3 − 8 G3 H3
2 K3 U13 U3 − J3

4 U13 U3+

4 H3
2 J3

2 U13 U3 − 2 H3
4 U13 U3 − 4 G3 H3 K3

2 U12 U3 + 4 H3 J3
2 K3 U12 U3−

4 H3
3 K3 U12 U3 − 2 H3

2 K3
2 U11 U3 − 3 G3 J3 K3

2 U10 U3 + J3
3 K3 U10 U3−

6 H3
2 J3 K3 U10 U3 − 2 K3

4 U1 U3 − K3
4 U2

2 − 4 G3 H3 K3
2 U13 U2+

4 H3 J3
2 K3 U13 U2 − 4 H3

3 K3 U13 U2 − 2 H3
2 K3

2 U12 U2 − 3 H3 J3 K3
2 U10 U2−

6 G3
2 H3

2 U13
2 − 8 G3 H3

3 U12 U13 − 2 H3
4 U11 U13 + 3 G3 H3

2 J3 U10 U13−
2 H3

2 K3
2 U1 U13 − H3

4 U12
2 + H3

3 J3 U10 U12 − 3 G3 H3
2 K3 U10

2−
H3

4 U10
2

Ξ8 = −2 G3 H3 K3
2 U8

2 − 2 H3
3 K3 U8

2 − 2 H3
2 K3

2 U7 U8 + H3 J3 K3
2 U5 U8+

2 G3 K3
3 U3 U8 − J3

2 K3
2 U3 U8 + 6 H3

2 K3
2 U3 U8 + 2 H3 K3

3 U2 U8+

6 G3 H3
2 K3 U13 U8 − H3

2 J3
2 U13 U8 + 2 H3

4 U13 U8 + 2 H3
3 K3 U12 U8+

H3
2 J3 K3 U10 U8 + 2 H3 K3

3 U3 U7 + 2 H3
3 K3 U13 U7 − H3 K3

3 U5
2+

J3 K3
3 U3 U5 − 3 H3

2 J3 K3 U13 U5 + 2 H3
2 K3

2 U10 U5 − 4 H3 K3
3 U3

2−
2 K3

4 U2 U3 − 4 G3 H3 K3
2 U13 U3 + 4 H3 J3

2 K3 U13 U3 − 4 H3
3 K3 U13 U3−

2 H3
2 K3

2 U12 U3 − 3 H3 J3 K3
2 U10 U3 − 2 H3

2 K3
2 U13 U2 − 4 G3 H3

3 U13
2−

2 H3
4 U12 U13 + H3

3 J3 U10 U13 − H3
3 K3 U10

2

Ξ9 = −H3
2 K3

2 U8
2 + 2 H3 K3

3 U3 U8 + 2 H3
3 K3 U13 U8 − K3

4 U3
2−

2 H3
2 K3

2 U13 U3 − H3
4 U13

2 = 0
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